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Abstract

Alzheimer’s disease is the most common form of progressive dementia, typified initially by
short term memory deficits which develop into a dramatic global cognitive decline. The
classical hall marks of Alzheimer’s disease include the accumulation of amyloid oligomers
and fibrils, and the intracellular formation of neurofibrillary tangles of hyperphosphorylated
tau. It is now clear that inflammation also plays a central role in the pathogenesis of the
disease through a number of neurotoxic mechanisms. Microglia are the key immune
regulators of the CNS which detect amyloidopathy through cell surface and cytosolic pattern
recognition receptors (PRRs) and respond by initiating inflammation through the secretion of
cytokines such as interleukin-1b (IL-1b). Inflammasomes, which regulate IL-1b release, are
formed following activation of cytosolic PRRs, and using genetic and pharmacological
approaches, NLRP3 and NLRP1 inflammasomes have been found to be integral in
pathogenic neuroinflammation in animal models of Alzheimer’s disease. Therefore, the
inflammasomes are very promising novel pharmacological targets which merit further
research in the continued endeavor for efficacious therapeutics for Alzheimer’s disease.

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of progressive
dementia representing 60%–80% of dementia cases and affects 26
million people worldwide (7). It is characterized by memory loss
and a gradual decline of cognitive function which leads to complete
dependence on care, with death occurring an average of 5–7 years
from diagnosis (166). Currently there are only symptom modifying
interventions for AD which do not alter the progression of the dis-
ease (28). Therefore, new treatments are desperately needed (7).

Histological investigation provided the first insights into the
underlying causes of AD. Over a century ago Alois Alzheimer
described the pathological hall marks of the disease of large insolu-
ble plaques and neurofibrillary tangles (6). The plaques are com-
posed of aggregates of amyloid-b (Ab) peptide, while
neurofibrillary tangles are caused by the accumulation of insoluble
filaments of hyper-phosphorylated tau. Subsequent histological
studies have identified neuroinflammatory responses by astrocytes
and microglia as another characteristic of AD. However, research is
on-going into whether these histological markers of the disease rep-
resent pathological drivers, unrelated by-products or unsuccessful
repair mechanisms.

Neuroimaging and biomarker studies have established that amy-
loid changes occur prior to tau pathology and this supports the
most widely accepted description of the underlying pathology of
AD which is the amyloid cascade hypothesis (119). This states that
AD is caused by disruptions in amyloid processing and/or clearance
leading to an accumulation of monomer amyloid peptides which

oligomerize into soluble toxic oligomers and insoluble fibrils, the
major constitute of plaques (54). This amyloid pathology then inter-
acts with a number processes, including tau physiology and inflam-
mation, to eventually cause neuronal death and cognitive decline
(54).

Genetic evidence supports the amyloid hypothesis; mutations in
amyloid precursor protein (APP) or amyloid processing enzymes
are the only known causes of autosomal dominant inheritable fami-
lial AD (12). No mutations in tau have been found to cause AD.
However, genome wide association studies have identified a num-
ber of other gene variants which confer an increased risk in the
development of sporadic AD and these variants have been found to
be involved in a variety of physiological processes including lipid
transport and autophagy, such as APOE4 (apolipoprotein E4) and
PICALM (phosphatidylinositol-binding clathrin assembly protein),
respectively reviewed by Tosto et al (160). Of interest to this
review is that a number of variants of genes involved in regulating
innate immune function confer a greater risk of developing AD
(58, 128). Examples include loss/reduction of function mutations in
the anti-inflammatory/phagocytosis TREM-2 (triggering receptor
expressed on myeloid cells 2) gene (52); variants of promoter
regions of inflammation modulating cytokines interleukin-10 (IL-
10) and TNFa (tumor necrosis factor a) (129); loss/reduction of
function of the anti-inflammatory/phagocytosis receptor CD33
gene (20); and gene variants of the complement receptor 1 (CR1),
which may be integral to the phagocytosis of opsonized amyloid
oligomers (62). The number and range of risk genes that are related
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to immune function demonstrate the integral role inflammation
may play in the pathogenesis of AD.

NEUROINFLAMMATION AND AD

Inflammation is a beneficial immune-vascular response to damage
and infection which involves the activation and recruitment of
immune cells. This response is regulated by cytokine signaling
molecules, of which interleukin-1b (IL-1b) is considered a central
member. However, chronic or excessive inflammation can exacer-
bate tissue damage and contribute to disease. Neuroinflammation is
primarily regulated by microglia, the resident immune cells of the
brain. These cells make up 10%–15% of the cells of the brain and
in a resting state exist in a ramified morphology with long proc-
esses which are continually monitoring the extracellular environ-
ment for perturbations in homeostasis, tissue damage or infection
(124). Upon sensing a change to the extracellular environment,
microglia become activated and develop an amoeboid morphology.
An activated microglia can act in an anti- or pro-inflammatory man-
ner depending on the stimuli. Anti-inflammatory activated micro-
glia clear debris through phagocytosis, and secrete anti-
inflammatory cytokines such as IL-4 and resolution growth factors
including brain derived neurotrophic factor (BDNF) (114). A pro-
inflammatory activated microglia will release neurotoxic reactive
oxygen species (ROS) and inflammatory cytokines, initiating a
potentially damaging immune-vascular response (17, 124). Astro-
cytes are also heavily involved in immune regulation in the brain
with continued research supporting growing overlap in astrocyte
and microglia function including phagocytosis (68), antigen

presentation (31), cytokine secretion (22), ROS production (143)
and vascular modulation (23, 149). Histology and PET imaging
studies demonstrate that inflammatory phenotypes of astrocytes
and microglia are a pathological hallmark of AD (14, 65).

Using traditional histological methods, clusters of activated
microglia and astrocytes have been shown to occur in in AD
patients (14, 65). These clusters appear in close proximity with
amyloid plaques and larger plaques correlate with a greater num-
ber of associated microglia, suggesting that amyloid fibrils, or
the relatively high concentrations of amyloid oligomers found in
the peri-plaque region, are inflammatory (65, 78). Microglia acti-
vation can be investigated using PET imaging with radiopharma-
ceutical tags. Studies using the activated microglia tags [11C](R)-
PK11195 and [11C]DAA1106, which recognize the 18 kDa trans-
locator protein (TSPO) present on activated microglia, found that
AD patients have elevated levels of activated microglia, and the
level of activation correlates with the severity of AD (25, 171,
174). Furthermore, the second generation TSPO ligand
[11C]DAA1106 has been used to demonstrate that inflammation
is present in people with mild cognitive impairment (MCI) who
then go on to develop AD, suggesting that inflammation is
chronic and ongoing prior to the onset of AD (171). The correla-
tion between inflammation and AD severity and the presence of
inflammation prior to AD onset suggests a causal relationship
between inflammation and AD. This is further supported by epi-
demiological evidence that known risk factors for AD have an
inflammatory component including stroke (162), head trauma
(104), diabetes (110), mid-life obesity (168), aging (79, 123) and
infection (120) (Figure 1).

Figure 1. Inflammation has an integral role in the pathogenesis of AD

and can be influenced through a number of genetic and environmental

factors. Amyloidopathy has been demonstrated to induce neurotoxic

inflammation which has been shown to cause and propagate

tauopathy. Neuronal damage caused by these processes could result

in further inflammation in an unresolved feedback pattern. Many risk

factors for AD such as inflammatory gene variants, brain injury,

midlife obesity, diabetes, ageing and infection all have an

inflammatory component; this supports the critical role inflammation

has in AD and highlights the therapeutic potential of targeting

inflammation.
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Mechanisms of inflammation induced
neurodegeneration

Inflammation in the brain can cause neuronal dysfunction and death
through a number of mechanisms. These can be grouped into the
direct and indirect effects of inflammation on neurones. Direct
effects are those in which immune cells engage in neurotoxic activ-
ities such as the production of digestive enzymes and ROS, and
phagocytosis of healthy neurones. The indirect effects of neuroin-
flammation are caused by astrocytes and microglia not performing
their role as homeostasis managing cells which results in neuronal
death through perturbations in the intracellular and extracellular
environments. Through these mechanisms it has been shown that
neuroinflammation alone is enough to cause cognitive deficits and
tauopathology; it is particularly interesting that brain regions most
affected by AD, such as the hippocampus, are also the most vulner-
able regions to neuroinflammation (61, 86).

Perhaps the best characterized mechanism of inflammation
induced neurotoxicity is the production of ROS and reactive nitro-
gen species (RNS) (16, 42). ROS and RNS are highly reactive mol-
ecules which can cause auto-catalytic oxidation of phospholipids
resulting in the permeabilization of membranes, oxidation of pro-
teins perturbing cellular function and DNA damage leading to dis-
ruption of protein production (16, 42). Ultimately, if ROS and RNS
production overwhelms the antioxidant mechanisms of the cell, the
build-up of oxidative damage will lead to cell death. Amyloid has
been shown to induce the production of ROS and RNS in microglia
and astrocytes (2, 3, 66). Fibrillary Ab induces the expression of
the ROS producing enzymes nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase and inducible nitric oxide synthase
(iNOS). These enzymes produce the highly neurotoxic ROS spe-
cies superoxide and nitric oxide, respectively (127, 161, 167, 169).
Microglia cytokine secretion causes the recruitment of peripheral
immune cells into the brain including neutrophils which produce
the highly neurotoxic ROS hypochlorite (39, 172). In addition to
ROS and RNS, neutrophils, microglia and astrocytes all secret neu-
rotoxic proteases including neutrophil elastase, cathepsins and
chymotrypsin-like proteases (75, 76, 172). Independent from
secreted neurotoxins, microglia induce neuronal death by direct
phagocytosis of healthy neurones. Nanomolar concentrations of
amyloid monomers, oligomers or fibrils induced microglial phago-
cytosis of healthy neurones through a membrane phosphatidylser-
ine dependent mechanism (107, 170).

Microglia are essential to the functioning brain. Their role in
synapse modulation, microenvironment maintenance and homeo-
stasis is crucial to neuronal function. A seminal article by Parkhurst
et al (114) demonstrated that depletion of microglia from the cortex
of mice caused a significant impairment in learning and memory.
Using selective deletion of BDNF from microglia, Parkhurst et al
demonstrated that it is likely that BDNF production is one of the
essential functions of microglia in a healthy brain (114). Microglia
treated with amyloid have been shown to dramatically lower the
production of BDNF while increasing the production of inflamma-
tory cytokines (60). Additionally, chronically inflamed microglia
fail to perform their role of protein uptake and degradation from the
extracellular environment and this can lead to the build-up of pro-
tein aggregates such as amyloid oligomers and fibrils. This is sup-
ported by research demonstrating that chronic inflammation
induced by head trauma (26, 67), infection (44), obesity (77, 97) or

bacterial toxins (121, 126) accelerates amyloid deposition and
memory deficits (112) (Figure 1).

While it appears that amyloid pathology is a causal factor in neu-
roinflammation in AD, it remains unclear how amyloid is linked to
the tau pathology and neurofibrillary tangles (Figure 1). There is
growing evidence that neuroinflammation may be one of the critical
linking factors (Figure 1). Overexpression of inflammatory cyto-
kines has been shown to increase tau pathology (48). Furthermore,
infection and bacterial toxins have been shown to exacerbate tau
phosphorylation and aggregation in mouse models of AD and
repeated mild head injury alone in wild-type mice is enough to
induce AD-like tau pathology (83, 98, 156). There is also evidence
that activated microglia cause tau pathology propagation through
the secretion of phosphorylated tau in exosomes (8). Interestingly,
tau pathology may be causal factor in neuroinflammation induced
neurotoxicity with genetic deletion of tau providing protection
from inflammatory stimuli in cultured neurones (94). Collectively,
this evidence supports a model of AD where amyloid induces sus-
tained inflammation which causes and propagates phosphorylated
and aggregated tau species which contributes substantially to neu-
ronal death in AD (Figure 1).

As the primary resident immune cell of the brain, microglia are
equipped with a number of cell membrane and cytosolic pattern
recognition receptors (PRRs) which initiate the inflammatory phe-
notype. The cell surface toll-like receptor (TLR) family are a group
of structurally similar PRRs expressed in adaptive and innate
immune cells, as well as epithelial, endothelial and fibroblast cells.
They are traditionally thought of as receptors which recognize
pathogen associated molecular patterns (PAMPs) which upon acti-
vation initiate a range of responses including cytokine secretion,
antigen presentation and proliferation; however it is now clear that
several TLRs are integral to the neuroinflammatory response in
AD. TLR2 can directly bind amyloid and initiate an inflammatory
response through the transcription factor NFjB (nuclear factor
kappa-light-chain-enhancer of activated B cells) and JNKs (c-Jun
N-terminal kinases) (32, 85, 89, 99) (Figure 2). Inhibition of TLR2
has been found to be therapeutic in mouse models of AD (99).
TLR4 and its co-receptor CD14, and scavenger receptor A and the
Ca21-activated K1 channel (KCa3.1) have also been implicated in
the detection of amyloid species in the extra-cellular environment
(92, 131) (Figure 2). The role of TLR4 signaling in AD pathology
is supported by human genetic evidence. A rare variant in the
TLR4 gene that causes a reduction in function has been found to
dramatically decrease the risk of developing late onset AD (103).
Amyloid is also phagocytosed by microglia through binding to the
phagocytotic receptor complex that includes CD36, CD47, and
a(6)b(1)-integrin (11) (Figure 2). Inside the cell, amyloid may also
affect cytosolic PRRs, such as NLRP3 (NLR family, pyrin domain
containing 3), to activate inflammatory complexes called inflamma-
somes (Figure 2, and see below). These have been found to be criti-
cal in AD associated inflammation through the release of the
inflammatory cytokine IL-1b (35, 56) (Figure 2).

Interleukin-1b

There is growing clinical and preclinical evidence that the inflam-
matory cytokine IL-1b plays a central role in the induction of path-
ogenic neuroinflammation in AD (24, 148). The release of IL-1b

from immune cells facilitates the orchestration of an inflammatory
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response, mediating the increased expression of adhesion mole-
cules, immune cell infiltration (165), and the production of further
inflammatory cytokines (38). Because of the central role of IL-1b

in coordinating inflammatory responses it is regulated at multiple
biological check points: expression, maturation, and secretion
(142). IL-1b is expressed as an inactive precursor, proIL-1b, which
is mediated through a NFjB-dependent mechanism downstream of
cell surface PRRs or IL-1 receptor 1 (IL-1R1) (157). For example,
a well characterized method of inducing proIL-1b expression is the
activation of TLR4 by lipopolysaccharide (LPS) (27). ProIL-1b is
biologically inactive requiring proteolytic cleavage into its mature
form which is mediated by caspase-1, a pro-inflammatory cysteine
aspartate-specific protease. Alongside IL-1b cleavage caspase-1
has additional essential roles, previously reviewed by Denes et al
(36), of note: cleavage of proIL-18 and initiating the inflammatory
form of cell death, pyroptosis (Figure 2). During pyroptosis, gas-
dermin D is cleaved by caspase 1 and the N-terminal fragment
associates with the cell membrane facilitating membrane perme-
abilization, cell death and IL-1b (and IL-18) release (74, 145).

Once cleaved, IL-1b is secreted from cells through a non-
conventional pathway, bypassing the Golgi-ER network, and has
been demonstrated to be secreted by several mechanisms, includ-
ing: the shedding of micro-vesicles and cell membrane permeabili-
zation. Secretion of IL-1b from cells has not been fully elucidated,
however it is largely accepted that the mode of secretion engaged
by cells is a continuum dependent upon the strength stimulus,
reviewed by Lopez-Castejon and Brough (90). However, caspase-1
is produced in cells as an inactive zymogen, procaspase-1, and
requires proximity-induced self-cleavage for activation. Homotypic
interactions between death domains motifs between proteins facili-
tate the oligomerization of large multimeric protein structures
which act as platforms to concentrate caspase-1 and catalyze auto-
activation (81, 82, 132).

Inflammasomes—protein scaffolds for caspase-1
activation

The large protein complexes which facilitate caspase-1 activation
are referred to as “inflammasomes” and are largely comprised of

Figure 2. Amyloid oligomers and monomers cause the expression of

NLRP3 and proIL-1b through TLR mediated NFjB activation. The

NLRP3 inflammasome is then activated by amyloid oligomers and

fibrils through phagosomal disruption or cell surface K1 channels.

Both pathways result in K1 efflux and cell swelling leading to Cl2

efflux through VRAC. This, through an unknown mechanism, leads to

deubiquitination of NLRP3 and ASC, and the binding of NEK7 to

NLRP3 resulting in NLRP3 inflammasome activation. The NLRP3-ASC

speck then recruits and activates caspase-1 which then cleaves gas-

dermin D and proIL-1b into their active forms. The N-terminus cleav-

age product of gasdermin D then forms pores in the cell membrane

allowing the leaderless IL-1b to leave the cell.
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three core components: an inflammasome sensor molecule, an
adaptor protein, apoptosis-associated speck-like protein containing
a CARD (ASC), and caspase-1 (82, 142). Inflammasome sensing
molecules are intracellular PRRs which sense inflammatory stimuli
and oligomerise with ASC via pyrin (PYD) death domains. This
initial ASC seeding triggers rapid recruitment of ASC dimers to
form large protein specks (82). Subsequently, interactions between
caspase activation and recruitment domains (CARD) present in
ASC and procaspase-1 recruit caspase-1 to the inflammasome and
initiate self-cleavage (43, 125). Multiple sensor molecules have
been identified which trigger inflammasome oligomerization, all
maintaining a common basic organization but varying in formation,
structure and activation.

The majority of inflammasome sensors that have been identi-
fied contain a NOD-like receptor (NLR) domain, characterized by
three distinct entities: a common NACHT domain; a leucine rich
repeats (LRRs) domain and one or both death domains, PYD or
CARD mediating ASC/caspase-1 interaction (96). The first
inflammasome to be identified was the NLRP1 (NOD-, LRR- and
pyrin domain-containing 1) followed by the identification of
additional NLR containing inflammasomes, including: NLRP3,
NLRP6, NLRP7, NLRP12 and NLRC4 (NOD-, LRR- and
CARD-containing 4) (82) which are activated in response to a
broad range of molecular signals. For example, it has been dem-
onstrated that murine NLRP1, NLRP7 and NLRC4 are activated
in response to: anthrax toxin (19), bacterial LPS (74) and cytosolic
flagellin (1), respectively. Another inflammasome, absent in mela-
noma 2 (AIM2), has been identified which contain a sensor mole-
cule that contains a pyrin and HIN domain-containing protein
(PYHIN) domain (21). The HIN region has been shown to bind
directly to cytosolic DNA to facilitate inflammasome formation
and caspase-1 activation. The identification and characterization
of these inflammasome structures, their specific activators and
independent mechanisms of activation demonstrates the immense
complexity of the innate immune system and its ability to detect
and respond to danger signals.

NLRP3 inflammasome

Canonical NLRP3 activation. The most extensively studied
inflammasome is the NLRP3 inflammasome and has been strongly
implicated in AD pathology (57). Despite being well studied the
mechanisms underpinning NLRP3 activation have not been fully
elucidated. Canonical NLRP3 activation, similar to IL-1b matura-
tion, requires two independent signals: (i) an initial NF-jB activat-
ing signal to upregulate NLRP3 expression (13) and (ii) an
additional activating signal which initiates a conformational change
in NLRP3 and drives inflammasome assembly. Whilst a diverse
range of molecules have been demonstrated to activate NLRP3, the
molecular pathways which lead to its activation are incompletely
understood. Various models of activation have been hypothesized,
including: (i) formation of pores in the membrane and subsequent
K1 efflux (45, 118); (ii) lysosomal rupture and release of cathe-
psins into the cytosol (64); (iii) mitochondrial dysfunction and the
production of ROS (147) and (iv) post translational modifications,
including deubiquitination (70, 91). In a landmark article, Mu~noz-
Planillo et al (105) were able to demonstrate that the proposed
hypotheses for NLRP3 activation converge on K1 efflux, leading
to the acceptance of its pivotal role in triggering NLRP3 activation.

Recent studies have also illustrated that volume regulated anion
channels (VRAC) and subsequent Cl- efflux are also vital for
inflammasome activation (35). Another landmark discovery in the
field of NLRP3 activation is the identification of NEK7 (NIMA-
related kinase 7) as an essential upstream regulator of NLRP3 (Fig-
ure 2). Two groups independently demonstrated NEK7 directly
interacting with NLRP3 and that this interaction is essential for
ASC recruitment and inflammasome activation (141, 144). It is evi-
dent that the activation and regulation of NLRP3 is a rapidly
expanding field and new discoveries are constantly being made
identifying novel molecular pathways involved in its regulation
(Figure 2).

A diverse range of activators have been identified including
pathogenic, environmental and sterile molecules. Pathogenic acti-
vators which activate NLRP3, range across the microbial spectrum
including: viruses, fungi and pore forming toxins produced from
bacteria, including nigericin produced from Streptomyces hygro-
scopicus (117). Environmental pollutants, such as silica and asbes-
tos (40), can also activate the inflammasome. Notably, NLRP3
inflammasome is activated to a diverse range of endogenous danger
signals and consequently is implicated in the pathology of sterile
inflammatory diseases. Sterile activators of NLRP3 can be largely
grouped into two main categories: (i) molecules released from
dying cells and (ii) extracellular particulates. An example of the for-
mer includes the release of ATP into the extracellular milieu from
dying cells, which activates P2X7 ATP-gated ion channels causing
K1 efflux and NLRP3 activation (95). The latter encompasses
large sterile particulate matter, including crystals of monosodium
urate and calcium pyrophosphate dihydrate, central to gout and
pseudogout pathology, respectively, and cholesterol crystals,
involved in atherosclerosis (41). Moreover, Halle et al (53) identi-
fied fibrillary Ab as an NLRP3 activator. Other sterile activators
of the inflammasome that have been identified include elevated
extracellular glucose (173), zinc deficiency (154) and changes in
osmolality (30).
Non-canonical NLRP3 activation. In addition to the canonical
activation pathway, a non-canonical pathway of activation has been
identified. This pathway describes murine caspase-11 or its human
orthologues, caspase-4 and caspase-5 dependent NLRP3 activation,
IL-1b release and pyroptotic cell death in response to intra-cellular
Gram-negative bacteria. The non-canonical pathway was first
described by Kayagaki et al (73), where they demonstrated NLRP3
activation by pathogen stimuli was caspase-11 dependent yet
caspase-11 was not required for canonical NLRP3 inflammasome
activation. It has since been discovered that intracellular LPS is the
molecule which activates caspase-11 through binding to caspase-11
CARD domain and triggering oligomerization and activation (146).
Further research elucidated K1 efflux as the trigger for NLRP3
activation in the non-canonical pathway, identifying the point in
which canonical and non-canonical pathways converge (134).
More recently, a novel pathway of activation has been described in
human monocytes, the alternative pathway. Gaidt et al (46) discov-
ered a novel pathway in human monocytes which leads to NLRP3
activation in response to LPS. Notably, activation via this pathway
is independent of many of the hallmark features of canonical acti-
vation including K1 efflux and pyroptosis, and is mediated by a
TLR-4/caspase-8 dependent pathway. Despite the identification
and characterization of multiple inflammasomes adopting complex
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independent regulatory systems the end point remains unified:
caspase-1 activation and IL-1b (and IL-18) maturation.

The role of IL-1b and IL-18 in AD

Elevated IL-1b levels in AD brains has been reported as early as
1989, and subsequent research has established a distinct role for IL-
1b in AD pathology (51). There is increased IL-1b expression in
microglia which cluster around amyloid plaques in the APPSwe/
PS1deltaE9 (APP/PS1) mouse model of AD (148), and mice lack-
ing IL-1 receptor antagonist, an endogenous IL-1 receptor 1
blocker, have increased microglial activation and neuronal damage
after intracerebroventricular Ab injection (34). Evidence also sug-
gests that IL-1b can directly affect both the amyloidgenesis and
tauopathy that is central to AD pathogenesis. It has been shown
that IL-1b can upregulate APP and Ab production in astrocytes
(15) and can induce tau phosphorylation via the MAPK-p38 path-
way to form neurofibrillary tangles (50). Alongside IL-1b, IL-18
has been implicated in AD pathology; brains have increased
mRNA and protein levels of IL-18 that co-localize with peri-plaque
neurones, astrocytes and microglia in human AD tissue (108). Pre-
clinical studies have also demonstrated a link between IL-18 and
amyloidopathy and tauopathy. IL-18 has been shown to upregulate
components of the g-secretase complex accelerating Ab production
(155), and to elevate proteins associated with the hyperphosphory-
lation of tau, such as, glycogen synthase kinase 3b and cyclin
dependent kinase-5, in SH-SY5Y neuroblastoma cells (109). Addi-
tionally, genetic analysis has identified polymorphisms in the IL-18
promoter region to be associated with an increased risk in develop-
ing sporadic late onset AD in specific populations (18). Combined
this research has shown that IL-1b and IL-18 have a pivotal role in
AD and has thus provoked further research focusing on the molecu-
lar entities upstream of IL-1b and IL-18, investigating how inflam-
masome dysregulation may contribute to AD.

Inflammasome activation in AD

Following the discovery that fibrillar Ab can activate NLRP3 (53),
further research has identified that all amyloid species, monomers,
oligomers and fibrils, have effects on NLRP3 expression and acti-
vation (Figure 2). A seminal article published by Heneka et al (56)
directly implicated NLRP3 activation in AD pathology. Heneka
showed that APP/PS1/NLRP32/2 and APP/PS1/caspase-12/2

mice have reduced neuroinflammation, decreased amyloid burden
and notably were protected from AD associated memory deficits.
Interestingly, the reduced amyloid burden was found not to be
because of a decrease in APP processing but rather an increase in
phagocytic activity from microglia. This suggests that activated
NLRP3 contributes to AD pathogenesis two-fold: generating toxic
IL-1b and propagating neuroinflammation, whilst impeding Ab

clearance resulting in plaque build-up (49). Furthermore, research
which crossed ASC2/2 mice with the APPSwe,Flor,Lon, PSEN1,
M146L, L286V (5xFAD) mouse model of AD found that 5xFAD/
ASC1/2 mice had reduced amyloid burden, increased astrocytic
phagocytic activity and reduced memory deficits compared with
the 5xFAD controls (33). The role of NLRP3 in AD has been fur-
ther acknowledged in clinical studies, alongside a further inflamma-
some, NLRP1. Seresella et al (139) investigated gene expression
and inflammasome activation in monocytes from patients

diagnosed with severe AD, mild AD and MCI. NLRP3 and
NLRP1 inflammasome components were upregulated compared
with age matched healthy controls and there was an augmented
response to LPS and Ab stimulation. An additional mechanism in
which NLRP3 can contribute to AD pathogenesis is in response to
dying neurones releasing ATP. The release of ATP can activate
P2X7 receptors on microglia to activate NLRP3 and consequently
exacerbate inflammation and damage (59). Furthermore, there is
evidence of P2X7 receptor upregulation in both preclinical and
clinical AD research (100).

Unlike NLRP3 which is highly expressed in microglia, NLRP1
is mainly expressed in neurones (80) and its proposed role in AD
pathogenesis is largely associated with neuronal death and axonal
degeneration, although its exact role is not clearly defined. Tan
et al (159) found that NLRP1 levels are upregulated in APP/PS1
mice and went on to show in vitro that silencing of NLRP1 reduced
Ab-induced pyroptotic cell death. They also showed that silencing
NLRP1 and caspase-1 in APP/PS1 mice reduced cell death in the
cortex and hippocampus, and improved spatial learning and mem-
ory in these animals. Therefore, proposing a role of NLRP1 in AD
pathology via neuronal pyroptotic cell death, synaptic loss and sub-
sequent cognitive decline. However, Kaushal et al (72) identified a
novel NLRP1/caspase-1/caspase-6 pathway, demonstrating that
activation of NLRP1 mediates caspase-1 activation which: (i)
cleaves IL-1b, (ii) activates caspase-6 and subsequent caspase-6
associated axonal degeneration and, (iii) increases the ratio of Ab42

to total Ab proteins. Despite proposing different hypotheses both
groups have identified an important role for NLRP1 activation in
neurones and axonal degeneration in AD, further highlighting an
area of interest to elucidate its exact role. It is important to note
there are fundamental differences in NLRP1 between mice and
humans. Rodents express three paralogous NLRP1 genes where as
humans only express one, and there are structural differences in the
death domains (163). Furthermore, a genetic association between
NLRP1 and AD has been proposed because of the identification of
four non-synonymous polymorphisms in the NLRP1 gene which
confer an increased risk for the development of AD (122).

A role for the NLRC4 inflammasome in AD pathology has been
identified in response to the fatty acid palmitate in astrocytes. Lui
et al (87) demonstrates that NLRC4 is activated and IL-1b is
secreted in palmitate treated primary astrocyte cultures, and further-
more NLRC4 and ASC are upregulated in AD brains. Lui et al
(87) also showed that conditioned media from palmitate treated
astrocytes increases the expression of BACE-1 and production of
Ab42 in neurones. This is of significant interest because fatty acid
metabolism has been identified as a risk factor for AD development
(113) and there is a higher fatty acid content in AD brain compared
with healthy controls (135).

TARGETING THE INFLAMMASOME
FOR AD

The processes involved in IL-1b secretion and signaling can be
pharmacologically targeted at a number of locations in the pathway
[reviewed by Baldwin et al (10)]. Recently, our group were the first
to successfully pharmacologically target the NLRP3 inflammasome
in animal models of AD (35). We screened NSAIDs for activity on
NLRP3 activation in vitro and found that the fenamate subclass
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selectively inhibited NLRP3 inflammasome formation. The target
was established to be the inhibition of the membrane ion channel
VRAC. Treatment with the fenamate mefenamic acid was then
found to abate memory deficits seen in a rat amyloid oligomer
injection model and APPSwe, PS1M146V and tauP301L (3xTgAD)
mouse model of AD (35). Previous research has shown that mefe-
namic acid can reduce amyloid toxicity in neuronal cultures and
abate memory deficits in rats infused with amyloid monomers (69).
Furthermore, the fenamate tolfenamic acid, which is structurally
very similar to mefenamic acid, has been found to be therapeutic in
the APPSwe R1.40 mouse model of AD, lowering plaque burden,
tau pathology and cognitive deficits (4, 152, 153). It was proposed
that tolfenamic acid was therapeutic through the inhibition of the
gene regulator specificity protein 1 (SP1). However, similar thera-
peutic effects in similar animal models of AD were seen solely
from the genetic deletion of the NLRP3 inflammasome and the
inflammasome adapter molecule ASC, suggesting that inhibitory
activity of fenamates on NLRP3 activation could exclusively
explain their efficacy (33, 53, 56). Collectively, this evidence dem-
onstrates that through NLRP3 inhibition and other potential mecha-
nisms, fenamates have been found to be therapeutic in four animal
models of AD and are therefore a promising potential therapeutic
in AD.

Pharmacologically inhibiting cell surface receptors which induce
IL-1b expression may prove difficult in AD because of the diver-
sity of the receptors involved. TLR2, TLR4, CD36 and IL-1R1,
have all been implicated in AD associated neuroinflammation.
Therefore, a polypharmacy approach would be required, increasing
the potential of off-target effects, as discussed below. Downstream
of these receptors is the intracellular adaptor molecule MyD88,
which is essential for TLR2, TLR4 and IL-1R signaling and may
therefore be a promising target in AD. Genetic deletion of MyD88
has been found to reduce plaque load and abate neuroinflammation
in the APP/PS1 mouse model of AD (84). However, MyD88
remains a controversial target for AD with further studies showing
that MyD882/1 mice having accelerated AD pathology and mem-
ory deficits in the APP/PS1 mouse model (102). This may be
because of the MyD88 receptor family being integral to the benefi-
cial phagocytotic response by microglia (47, 102, 133). The
MyD88 receptor family induce transcriptional changes through
transcription regulator of NFjB, however, targeting NFjB in AD
is unlikely to be successful because of the broad range of processes
and genes that NFjB regulates (111). For example NFjB expres-
sion and activation is upregulated during synaptic activity and this
has been shown to be essential for long-term potentiation (LTP), an
essential process in learning and memory (5, 101). An additional
problem for targeting TLRs, MyD88 and NFjB in AD is that these
proteins are essential for host response to infection and therefore
the chronic inhibition needed to treat AD may render the patient
susceptible to infection (88, 130, 137, 158). Conversely, the
NLRP3 inflammasome is primarily activated by sterile stimuli. Fur-
thermore, the minimal effect of genetic deletion of NRLP3 on
infection has led to the proposal that inflammasomes are largely
redundant in vertebrate adapted pathogens (93). This suggests that
chronic inhibition of inflammasomes, particularly the NLRP3
inflammasome, would not greatly affect the susceptibility of
patients to infection, making inflammasomes an excellent target
for AD.

There are multiple cell pathways that act as the secondary stimu-
lus in inflammasome activation and these may provide an attractive
target for pharmacological intervention in AD. The P2X7 receptor
is activated by extracellular ATP which is released upon cell death
and leads to NLRP3 inflammasome stimulation via K1 efflux. Evi-
dence is building that amyloid mediated NLRP3 inflammasome
activation is dependent on the P2X7 receptor (115, 138). This is
supported by research which demonstrated that pharmacological
intervention with P2X7 antagonists were found to be therapeutic in
a rat amyloid injection model (138). Yet again there is an issue
with off target effects because of the P2X7 receptor having a range
of functions on a range of cell types including neurones, astrocytes
and oligodendrocytes. However, evidence is building that activa-
tion of the P2X7 receptor is pathologically elevated in AD in multi-
ple cell types which leads to amyloidogenic APP processing. This
suggests that P2X7 inhibition remains an attractive target in AD
with multiple therapeutic mechanisms (37, 150).

Phagosomal stress causes the release of cathepsin B into the
cytosol where it activates the NLRP3 inflammasome. Amyloid
fibrils have been shown to induce phagosomal stress causing
NLRP3 activation through a cathepsin B dependent mechanism.
There is evidence that cathepsin B’s role in NLRP3 activation
involves both the prototypical NLRP3 activation stimulus of K1

efflux (53, 105) as well as the cathepsin B dependent degradation
of NLRP10 which acts as an inhibitor of NLRP3 activation (106).
Targeting cathepsin B has been successful in animal models of AD
with research demonstrating that administration of the cathepsin B
inhibitor CA074Me is therapeutic in the APPLon mouse model of
AD (63). However, there is evidence that cathepsins play an impor-
tant role in amyloid degradation (164), therefore further research is
required to evaluate the potential of cathepsins as a putative thera-
peutic target in AD.

Downstream from inflammasome activation there are a number
of potential therapeutic targets including caspase-1 activation and
signaling at the IL-1R1 receptor. Neither, caspase-1 or IL-1R1 have
been pharmacologically targeted in animal models of AD. How-
ever, genetic deletion of caspase-1 has been shown to increase
amyloid phagocytosis in isolated microglia and reduce neuroin-
flammation following striatal amyloid injections in mice (53, 56).
Therefore, there is some evidence that this approach is worth pursu-
ing. Conversely, evidence for IL-1R1 antagonists as therapeutic in
AD does not appear promising. IL-1R1 KO mice have cognitive
deficits, suggesting that chronic inhibition of IL-1R1 may have det-
rimental effects in AD (9). Possible causes for the cognitive effects
of IL-1R1 inhibition include: (i) the need for low levels of IL-1 sig-
naling to promote phagocytosis of extracellular debris (9), (ii) the
critical role of neuronal IL-1R1 signaling in LTP induction (136)
and (iii) the role of IL-1 signaling in synapse formation through
IL1RAPL1 (interleukin-1-receptor accessory protein like 1) medi-
ated JNK activation pathway (116). Targeting IL-1R1 also has the
additional drawback of having no effect on caspase-1 dependent
pyroptosis. Therefore, there will continue to be microglial death,
resulting in the release of damaging cell contents, and fewer micro-
glia to perform important functions independent of inflammation.
Because of these limitations, inhibition of IL-1R1 is not the pre-
ferred therapeutic strategy of inflammasome dependent AD
pathology.

Targeting the molecular and physiological processing directly
involved in inflammasome formation is the optimal approach for
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limiting the negative effects of IL-1b signaling in AD. Inflamma-
some specific approaches would have limited side-effects and
would not greatly impact the patients’ resistance to disease. How-
ever, there are currently no drugs which have been conclusively
shown to directly inhibit inflammasome formation. Several
approaches could be taken in drug design including: (i) inhibiting
NLRP3-NEK7 binding (55), possibly by targeting NEK7 phospho-
rylation (144); (ii) targeting NLRP3 ubiquitination status by aug-
menting specific ubiquitin ligases activity or blocking
deubiquitinases (70, 91), although this approach may have potential
off target effects because of the many roles of the ubiquitin system;
(iii) inhibiting the phosphorylation of the NLRP3 protein (151);
(iv) or targeting the PRR-ASC, ASC-ASC or ASC-caspase interac-
tion sites directly (140). Currently, there are existing inflammasome
inhibiting drugs available where the mechanism of action has not
fully been elucidated and may involve targeting the processes men-
tioned above or an unknown regulatory system of inflammasome
formation. The drugs include: (i) 3,4-methylenedioxy-b-nitrostyr-
ene (MNS) which has been shown to alter cysteines on the NLRP3
protein itself and this may alter NLRP3-NEK7, NLRP3-NLRP3 or
NLRP3-ASC associations; (ii) MCC950 (CP-456773) is also a
potent inhibitor of NLRP3 activation whose mechanism of action
has been shown to be down stream of potassium efflux but does
not alter NLRP3-ASC or ASC-ASC binding, possibly implicating
NLRP3-NEK7, NLRP3-NLRP3, ubiquitination or phosphorylation
as potential mechanisms of action (29). There are continuing efforts
to develop novel inflammasome inhibitors using screening and
structure based molecular modeling techniques to target inflamma-
some formation and these will provide a diverse set of tools to fur-
ther investigate the role of inflammasomes in a range of diseases
including AD.

CONCLUSION

It is now clear that inflammation plays a fundamental role in the
pathophysiology of AD. Neuroinflammation in AD is mediated
through a number of PRRs including cell surface receptors such as
TLR2 and TLR4, as well as cytosolic receptors, of which the
NLRP3 inflammasome has been found to be central. Consequently,
inflammasomes are an attractive therapeutic target for AD and have
multiple points in the activation pathway which can be inhibited.
Because of non-specific effects and complicated interactions with
AD pathology targets upstream of inflammasome formation, such
as TLR4 and cathepsin B, may not be preferable as a chronic phar-
macological intervention strategy required for AD. Similarly, tar-
geting IL-1R1 may have negative effects of cognition and AD
progression because of the essential role of basal IL-1 signaling in
brain parenchyma maintenance. However, the NLRP3 inflamma-
some is an attractive pharmacological target as inhibition would
specifically abate pathological inflammation without altering basal
microglia function or leaving the patient overly susceptible to infec-
tion. No drugs have currently been established to directly bind and
inhibit the NLRP3 inflammasome, however, the essential processes
for NLRP3 activation of VRAC activation has been targeted using
currently indicated fenamate NSAIDs and these were found to be
therapeutic in four separate animal models of AD (35, 68, 152).
However, fenamate NSAIDs are also COX inhibitors and poten-
tially have other effects on APP expression and cleavage (71). The

challenge for the field now is to develop non-toxic and specific
inflammasome inhibitors to fully elucidate the therapeutic potential
of targeting this pathway in AD.
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